
Scrape and Search:

Your API Web Finder
An exploratory project by Matthew James Brady

.

.

The core idea behind this project is simple: make it easier for

developers to find the APIs they need. While existing directories

exist, they often lack flexibility, feel outdated, or are limited in

scope. By automating the collection and organization of API

data, this project aims to remove some of that friction. Building

this system won’t be without obstacles. Websites vary wildly in

structure, and dynamic content can be especially tricky to handle

reliably. Choosing the right balance between speed, accuracy, and

resilience in scraping will be an ongoing challenge. On the

frontend, integrating PyScript allows us to keep everything in

Python, but also pushes us to think creatively about

performance and user experience in the browser. Beyond the

technical goals, this project opens the door to broader

questions—how can developers better share and discover tools?

What role does automation play in curating the web? We hope

this work sparks those kinds of conversations while providing a

useful tool in the process.

Abstract

Introduction

Methods

Expected Results

Discussion
In the modern development landscape, APIs are essential tools for building

applications, yet discovering and accessing them efficiently remains a challenge. This

project presents the design and initial implementation of an automated API indexing

and search platform. Leveraging Python’s BeautifulSoup for parsing HTML content

and Selenium for dynamic web automation, the system scrapes various public

websites to extract relevant API information, including names, descriptions, and

documentation links.

The extracted data is stored in a structured index, which is then integrated into a web

interface that allows users to search for APIs using keywords, mimicking the familiar

experience of a search engine. The platform is designed to streamline the discovery

process for developers by providing quick, organized, and relevant results.

Initial outcomes demonstrate the effectiveness of combining static and dynamic

scraping methods to create a reliable dataset of APIs. Future enhancements include

implementing ranking algorithms, user feedback integration, and expanding the

source pool for broader coverage. This project not only simplifies API discovery but

also showcases the potential of web scraping and automation in solving real-world

information retrieval problems.

Conclusions

• This project highlights a growing need for smarter, developer-

focused tools that reduce time spent on repetitive discovery tasks.

• Leveraging automation and in-browser Python development opens

new possibilities for accessible, data-driven web tools.

• Though still in development, the system presents a promising

approach to rethinking how APIs are found, filtered, and used in

modern workflows.

Hypotheses

• An automated web scraping pipeline will yield a more comprehensive and

up-to-date API dataset compared to existing static API repositories.

• The combined use of BeautifulSoup for static content and Selenium for

dynamic rendering will enable robust and accurate data extraction across

diverse website structures.

• Implementing a keyword-driven search interface will significantly reduce the

time required for users to locate relevant APIs, enhancing overall

discoverability.

As the number of publicly available APIs continues to grow, so does the challenge of

discovering them efficiently. Developers often rely on scattered directories, outdated

documentation, or broad web searches to find APIs relevant to their needs. This

fragmented approach can slow down development and limit access to valuable resources.

While several platforms attempt to organize APIs, they are often domain-specific, require

manual submissions, or lack flexible keyword-based search. This gap highlights the need

for a more dynamic and developer-friendly solution—one that automates the discovery

and indexing of APIs from across the web.

Motivated by this challenge, this project explores how web scraping and browser

automation tools can be used to collect and structure API information from multiple

sources. By combining BeautifulSoup and Selenium, we create a backend system capable

of extracting live content from static and dynamic web pages. This data is then presented

through a custom-built website that allows users to search for APIs using intuitive

keyword queries, returning organized and relevant results.

This approach not only streamlines the API discovery process but also showcases the

power of automation in solving real-world data retrieval problems.

•Web Scraping & Automation: BeautifulSoup is used for parsing

static HTML and Selenium for interacting with dynamic web pages

to extract API metadata from various online sources

•Data Structuring & Indexing: Extracted API data will be

cleaned and organized into a structured format, storing attributes

like API name, description, and documentation link for efficient

searchability.

•Frontend & Search Interface: Using PyScript, we will develop a

browser-based interface that enables users to input keyword queries

and view matching API results in a simple, search engine-style

layout.

We anticipate that the implementation of this project will

demonstrate the effectiveness of automated web scraping

combined with a lightweight, Python-based frontend for improving

API discovery. The resulting system is expected to streamline the

search process, provide a broader API dataset, and offer a user-

friendly experience for developers seeking APIs.

• Improved Accessibility: Users will be able to discover APIs more

efficiently through keyword-based search instead of browsing scattered

sources.

• Lightweight, Python-Powered Frontend: PyScript will enable a

seamless, browser-based user experience without the need for a traditional

JavaScript-heavy frontend.

• Effective Data Extraction: The dual use of BeautifulSoup and

Selenium is expected to handle a wide range of website structures, both

static and dynamic.

