Corrosion Inhibitors vs Oxidizing Agent

By: Colin Jones
Overview

• Objective

• Procedure
 • Materials

• Calculations & Results

• Discussion
 • Validity of Experiment
Objective

• Verify material composition through hardness testing
 • Inconclusive

• Measure material loss due to “uniform” corrosion
 • American Society for Testing and Materials (ASTM) standard

• Calculate corrosion rates

• Analyze impact of treatment on corrosion rate
Procedure

• Materials
 • Steel specimens
 • ASTM A569
 • <0.15% carbon
 • Oxidizing agent
 • Hydrogen peroxide, salt, vinegar
 • 16oz / 0.5 tbsp / 2oz
 • Testing peripherals
 • Scale, abrasive pad, spray bottle

• ASTM G1-03
 • Mass and dimensions
 • 6.5 – Sig Figs
 • Specimen designation
 • 6.2 - Methods
 • 6.2.5 – Galvanic interactions
 • Mechanical corrosion removal
 • 7.1.1 – Abraded control specimen
Calculations

Corrosion Rate

\[
Corrosion\ Rate = \frac{K \times W}{A \times T \times D}
\]

Variable Identification:

- \(T \) = time of exposure in hours
- \(A \) = area in cm\(^2\)
- \(W \) = mass loss in grams
- \(D \) = density in g/cm\(^3\)

\(K = 8.76 \times 10^{-7} \) (ASTM G1-03) - mm/year

<table>
<thead>
<tr>
<th>Sheet Name</th>
<th>Material</th>
<th>Initial Mass Adjustment (g)</th>
<th>Length (cm)</th>
<th>Width (cm)</th>
<th>Taped Width (cm)</th>
<th>Thickness (cm)</th>
<th>Mass of Saturated Tape (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 CTRL</td>
<td>A569</td>
<td>-2.5</td>
<td>30.400625</td>
<td>30.48</td>
<td>23.38625</td>
<td>0.156</td>
<td>2.48</td>
</tr>
<tr>
<td>CTRL</td>
<td>A569</td>
<td>-2.5</td>
<td>32.940625</td>
<td>30.48</td>
<td>23.1775</td>
<td>0.159</td>
<td>2.56</td>
</tr>
<tr>
<td>CB</td>
<td>A569</td>
<td>-2.5</td>
<td>32.940625</td>
<td>30.48</td>
<td>23.01875</td>
<td>0.15</td>
<td>2.55</td>
</tr>
<tr>
<td>CRC</td>
<td>A569</td>
<td>-2.5</td>
<td>32.940625</td>
<td>30.48</td>
<td>23.01875</td>
<td>0.15</td>
<td>2.57</td>
</tr>
<tr>
<td>CX</td>
<td>A569</td>
<td>-2.5</td>
<td>32.940625</td>
<td>30.32125</td>
<td>23.1775</td>
<td>0.156</td>
<td>2.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen - 220 CTRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>A569</td>
</tr>
</tbody>
</table>
Average Corrosion Rates

Control specimens

- 220 CTRL
 - 3.70 mm/year

- CTRL
 - 3.93 mm/year

Treated specimens

- CB
 - 3.65 mm/year

- CRC
 - 4.52 mm/year

- CX
 - 3.50 mm/year
Corrosion Rate vs Time Plots

- **Corrosion Rate vs Time Exposed Specimen 220 CTRL**
- **Corrosion Rate vs Time Exposed Specimen CTRL**
- **Corrosion Rate vs Time Exposed Specimen CX**
- **Corrosion Rate vs Time Exposed Specimen CB**
- **Corrosion Rate vs Time Exposed Specimen CRC**
Discussion

• Experimental success
 • Consistent corrosion rates

• Experimental short-sights
 • Abrasion skewing results?

• Improve data by reducing scope to one product
 • Unadulterated measurement of inhibitor effectiveness
 • Show non-linearity of corrosion rate
References

• American Society of Testing Materials G1-03, *Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens*, ASTM International

Anyone Still Awake?